منابع مشابه
AV-differential geometry: Euler-Lagrange equations
A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent lagrangians and hamiltonians. In our...
متن کاملThe Euler Equations as a Differential Inclusion
In this paper we propose a new point of view on weak solutions of the Euler equations, describing the motion of an ideal incompressible fluid in R with n ≥ 2. We give a reformulation of the Euler equations as a differential inclusion, and in this way we obtain transparent proofs of several celebrated results of V. Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and th...
متن کاملExterior Differential Systems and Euler-Lagrange Partial Differential Equations
Preface During the 1996-97 academic year, Phillip Griffiths and Robert Bryant conducted a seminar at the Institute for Advanced Study in Princeton, NJ, outlining their recent work (with Lucas Hsu) on a geometric approach to the calculus of variations in several variables. The present work is an outgrowth of that project; it includes all of the material presented in the seminar, with numerous ad...
متن کاملConservation Laws for Euler-lagrange Exterior Differential Systems
The calculus of variations is a powerful tool PDE, allowing detailed analysis when applicable. In this series of 2 talks I will explain how to describe them in a coordinate free manner using exterior differential systems. Using this we will be describe a particularly nice formulation of Noether’s theorem describing the space of conservation laws. From this we will be able to derive some nice co...
متن کاملThe Reduced Euler-Lagrange Equations
Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1975
ISSN: 0022-0396
DOI: 10.1016/0022-0396(75)90020-0